On the Parameterized Complexity of Clustering Incomplete Data into Subspaces of Small Rank

Author:

Ganian Robert,Kanj Iyad,Ordyniak Sebastian,Szeider Stefan

Abstract

We consider a fundamental matrix completion problem where we are given an incomplete matrix and a set of constraints modeled as a CSP instance. The goal is to complete the matrix subject to the input constraints and in such a way that the complete matrix can be clustered into few subspaces with low rank. This problem generalizes several problems in data mining and machine learning, including the problem of completing a matrix into one with minimum rank. In addition to its ubiquitous applications in machine learning, the problem has strong connections to information theory, related to binary linear codes, and variants of it have been extensively studied from that perspective. We formalize the problem mentioned above and study its classical and parameterized complexity. We draw a detailed landscape of the complexity and parameterized complexity of the problem with respect to several natural parameters that are desirably small and with respect to several well-studied CSP fragments.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3