Author:
Zhang Zhaoqi,Qi Panpan,Wang Wei
Abstract
Dynamic malware analysis executes the program in an isolated environment and monitors its run-time behaviour (e.g. system API calls) for malware detection. This technique has been proven to be effective against various code obfuscation techniques and newly released (“zero-day”) malware. However, existing works typically only consider the API name while ignoring the arguments, or require complex feature engineering operations and expert knowledge to process the arguments. In this paper, we propose a novel and low-cost feature extraction approach, and an effective deep neural network architecture for accurate and fast malware detection. Specifically, the feature representation approach utilizes a feature hashing trick to encode the API call arguments associated with the API name. The deep neural network architecture applies multiple Gated-CNNs (convolutional neural networks) to transform the extracted features of each API call. The outputs are further processed through bidirectional LSTM (long-short term memory networks) to learn the sequential correlation among API calls. Experiments show that our solution outperforms baselines significantly on a large real dataset. Valuable insights about feature engineering and architecture design are derived from the ablation study.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献