Alternating Language Modeling for Cross-Lingual Pre-Training

Author:

Yang Jian,Ma Shuming,Zhang Dongdong,Wu ShuangZhi,Li Zhoujun,Zhou Ming

Abstract

Language model pre-training has achieved success in many natural language processing tasks. Existing methods for cross-lingual pre-training adopt Translation Language Model to predict masked words with the concatenation of the source sentence and its target equivalent. In this work, we introduce a novel cross-lingual pre-training method, called Alternating Language Modeling (ALM). It code-switches sentences of different languages rather than simple concatenation, hoping to capture the rich cross-lingual context of words and phrases. More specifically, we randomly substitute source phrases with target translations to create code-switched sentences. Then, we use these code-switched data to train ALM model to learn to predict words of different languages. We evaluate our pre-training ALM on the downstream tasks of machine translation and cross-lingual classification. Experiments show that ALM can outperform the previous pre-training methods on three benchmarks.1

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Neural Ranking Framework: Toward Maximized Business Goal for Cascade Ranking Systems;Proceedings of the ACM Web Conference 2024;2024-05-13

2. Multilingual Event Causality Identification via Meta-learning with Knowledge;Proceedings of the 2024 International Conference on Generative Artificial Intelligence and Information Security;2024-05-10

3. A cross-guidance cross-lingual model on generated parallel corpus for classical Chinese machine reading comprehension;Information Processing & Management;2024-03

4. SE-HCL: Schema Enhanced Hybrid Curriculum Learning for Multi-Turn Text-to-SQL;IEEE Access;2024

5. Can Pretrained English Language Models Benefit Non-English NLP Systems in Low-Resource Scenarios?;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3