Polynomial Matrix Completion for Missing Data Imputation and Transductive Learning

Author:

Fan Jicong,Zhang Yuqian,Udell Madeleine

Abstract

This paper develops new methods to recover the missing entries of a high-rank or even full-rank matrix when the intrinsic dimension of the data is low compared to the ambient dimension. Specifically, we assume that the columns of a matrix are generated by polynomials acting on a low-dimensional intrinsic variable, and wish to recover the missing entries under this assumption. We show that we can identify the complete matrix of minimum intrinsic dimension by minimizing the rank of the matrix in a high dimensional feature space. We develop a new formulation of the resulting problem using the kernel trick together with a new relaxation of the rank objective, and propose an efficient optimization method. We also show how to use our methods to complete data drawn from multiple nonlinear manifolds. Comparative studies on synthetic data, subspace clustering with missing data, motion capture data recovery, and transductive learning verify the superiority of our methods over the state-of-the-art.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Fast and Efficient Approach for Human Action Recovery From Corrupted 3-D Motion Capture Data Using QR Decomposition-Based Approximate SVD;IEEE Transactions on Human-Machine Systems;2024-08

2. Multi-Channel Graph Fusion Representation for Tabular Data Imputation;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. Blockwise Principal Component Analysis for monotone missing data imputation and dimensionality reduction;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

4. Unique Sparse Decomposition of Low Rank Matrices;IEEE Transactions on Information Theory;2023-04

5. NMMF-Stream: A Fast and Accurate Stream-Processing Scheme for Network Monitoring Data Recovery;IEEE INFOCOM 2022 - IEEE Conference on Computer Communications;2022-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3