Learning Meta Model for Zero- and Few-Shot Face Anti-Spoofing

Author:

Qin Yunxiao,Zhao Chenxu,Zhu Xiangyu,Wang Zezheng,Yu Zitong,Fu Tianyu,Zhou Feng,Shi Jingping,Lei Zhen

Abstract

Face anti-spoofing is crucial to the security of face recognition systems. Most previous methods formulate face anti-spoofing as a supervised learning problem to detect various predefined presentation attacks, which need large scale training data to cover as many attacks as possible. However, the trained model is easy to overfit several common attacks and is still vulnerable to unseen attacks. To overcome this challenge, the detector should: 1) learn discriminative features that can generalize to unseen spoofing types from predefined presentation attacks; 2) quickly adapt to new spoofing types by learning from both the predefined attacks and a few examples of the new spoofing types. Therefore, we define face anti-spoofing as a zero- and few-shot learning problem. In this paper, we propose a novel Adaptive Inner-update Meta Face Anti-Spoofing (AIM-FAS) method to tackle this problem through meta-learning. Specifically, AIM-FAS trains a meta-learner focusing on the task of detecting unseen spoofing types by learning from predefined living and spoofing faces and a few examples of new attacks. To assess the proposed approach, we propose several benchmarks for zero- and few-shot FAS. Experiments show its superior performances on the presented benchmarks to existing methods in existing zero-shot FAS protocols.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Source-Free Domain Adaptation With Domain Generalized Pretraining for Face Anti-Spoofing;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-08

2. Learning Meta Model for Strong Generalization Deepfake Detection;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. Rethinking Vision Transformer and Masked Autoencoder in Multimodal Face Anti-Spoofing;International Journal of Computer Vision;2024-06-05

4. Open-Set Single-Domain Generalization for Robust Face Anti-Spoofing;International Journal of Computer Vision;2024-06-03

5. MFAE: Masked Frequency Autoencoders for Domain Generalization Face Anti-Spoofing;IEEE Transactions on Information Forensics and Security;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3