RTN: Reparameterized Ternary Network

Author:

Li Yuhang,Dong Xin,Zhang Sai Qian,Bai Haoli,Chen Yuanpeng,Wang Wei

Abstract

To deploy deep neural networks on resource-limited devices, quantization has been widely explored. In this work, we study the extremely low-bit networks which have tremendous speed-up, memory saving with quantized activation and weights. We first bring up three omitted issues in extremely low-bit networks: the squashing range of quantized values; the gradient vanishing during backpropagation and the unexploited hardware acceleration of ternary networks. By reparameterizing quantized activation and weights vector with full precision scale and offset for fixed ternary vector, we decouple the range and magnitude from direction to extenuate above problems. Learnable scale and offset can automatically adjust the range of quantized values and sparsity without gradient vanishing. A novel encoding and computation pattern are designed to support efficient computing for our reparameterized ternary network (RTN). Experiments on ResNet-18 for ImageNet demonstrate that the proposed RTN finds a much better efficiency between bitwidth and accuracy and achieves up to 26.76% relative accuracy improvement compared with state-of-the-art methods. Moreover, we validate the proposed computation pattern on Field Programmable Gate Arrays (FPGA), and it brings 46.46 × and 89.17 × savings on power and area compared with the full precision convolution.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Binary Encoding for Ternary Neural Networks Toward Deployment on Emerging Memory;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Quantization of Neural Networks;Computational Intelligence Methods and Applications;2024

3. BISDU: A Bit-Serial Dot-Product Unit for Microcontrollers;ACM Transactions on Embedded Computing Systems;2023-09-26

4. iMAT: Energy-Efficient In-Memory Acceleration for Ternary Neural Networks With Sparse Dot Product;2023 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED);2023-08-07

5. Advanced Binary Neural Network for Single Image Super Resolution;International Journal of Computer Vision;2023-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3