Author:
Cui Yiming,Che Wanxiang,Zhang Wei-Nan,Liu Ting,Wang Shijin,Hu Guoping
Abstract
Story Ending Prediction is a task that needs to select an appropriate ending for the given story, which requires the machine to understand the story and sometimes needs commonsense knowledge. To tackle this task, we propose a new neural network called Diff-Net for better modeling the differences of each ending in this task. The proposed model could discriminate two endings in three semantic levels: contextual representation, story-aware representation, and discriminative representation. Experimental results on the Story Cloze Test dataset show that the proposed model siginificantly outperforms various systems by a large margin, and detailed ablation studies are given for better understanding our model. We also carefully examine the traditional and BERT-based models on both SCT v1.0 and v1.5 with interesting findings that may potentially help future studies.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献