Generating Adversarial Examples for Holding Robustness of Source Code Processing Models

Author:

Zhang Huangzhao,Li Zhuo,Li Ge,Ma Lei,Liu Yang,Jin Zhi

Abstract

Automated processing, analysis, and generation of source code are among the key activities in software and system lifecycle. To this end, while deep learning (DL) exhibits a certain level of capability in handling these tasks, the current state-of-the-art DL models still suffer from non-robust issues and can be easily fooled by adversarial attacks.Different from adversarial attacks for image, audio, and natural languages, the structured nature of programming languages brings new challenges. In this paper, we propose a Metropolis-Hastings sampling-based identifier renaming technique, named \fullmethod (\method), which generates adversarial examples for DL models specialized for source code processing. Our in-depth evaluation on a functionality classification benchmark demonstrates the effectiveness of \method in generating adversarial examples of source code. The higher robustness and performance enhanced through our adversarial training with \method further confirms the usefulness of DL models-based method for future fully automated source code processing.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CARL: Unsupervised Code-Based Adversarial Attacks for Programming Language Models via Reinforcement Learning;ACM Transactions on Software Engineering and Methodology;2024-08-14

2. A survey on robustness attacks for deep code models;Automated Software Engineering;2024-08-09

3. Vulnerability Detection via Multiple-Graph-Based Code Representation;IEEE Transactions on Software Engineering;2024-08

4. Do Large Language Models Pay Similar Attention Like Human Programmers When Generating Code?;Proceedings of the ACM on Software Engineering;2024-07-12

5. Adversarial Attack and Robustness Improvement on Code Summarization;Proceedings of the 28th International Conference on Evaluation and Assessment in Software Engineering;2024-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3