Natural Image Matting via Guided Contextual Attention

Author:

Li Yaoyi,Lu Hongtao

Abstract

Over the last few years, deep learning based approaches have achieved outstanding improvements in natural image matting. Many of these methods can generate visually plausible alpha estimations, but typically yield blurry structures or textures in the semitransparent area. This is due to the local ambiguity of transparent objects. One possible solution is to leverage the far-surrounding information to estimate the local opacity. Traditional affinity-based methods often suffer from the high computational complexity, which are not suitable for high resolution alpha estimation. Inspired by affinity-based method and the successes of contextual attention in inpainting, we develop a novel end-to-end approach for natural image matting with a guided contextual attention module, which is specifically designed for image matting. Guided contextual attention module directly propagates high-level opacity information globally based on the learned low-level affinity. The proposed method can mimic information flow of affinity-based methods and utilize rich features learned by deep neural networks simultaneously. Experiment results on Composition-1k testing set and alphamatting.com benchmark dataset demonstrate that our method outperforms state-of-the-art approaches in natural image matting. Code and models are available at https://github.com/Yaoyi-Li/GCA-Matting.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-behavior recommendation with SVD Graph Neural Networks;Expert Systems with Applications;2024-09

2. Text-Guided Portrait Image Matting;IEEE Transactions on Artificial Intelligence;2024-08

3. Hand Enhanced Video Matting;Proceedings of the 2024 5th International Conference on Computing, Networks and Internet of Things;2024-05-24

4. Color subspace exploring for natural image matting;IET Image Processing;2024-04-24

5. KD-Former: Transformer Knowledge Distillation for Image Matting;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3