Improving Interpretability of Deep Sequential Knowledge Tracing Models with Question-centric Cognitive Representations

Author:

Chen Jiahao,Liu Zitao,Huang Shuyan,Liu Qiongqiong,Luo Weiqi

Abstract

Knowledge tracing (KT) is a crucial technique to predict students’ future performance by observing their historical learning processes. Due to the powerful representation ability of deep neural networks, remarkable progress has been made by using deep learning techniques to solve the KT problem. The majority of existing approaches rely on the homogeneous question assumption that questions have equivalent contributions if they share the same set of knowledge components. Unfortunately, this assumption is inaccurate in real-world educational scenarios. Furthermore, it is very challenging to interpret the prediction results from the existing deep learning based KT models. Therefore, in this paper, we present QIKT, a question-centric interpretable KT model to address the above challenges. The proposed QIKT approach explicitly models students’ knowledge state variations at a fine-grained level with question-sensitive cognitive representations that are jointly learned from a question-centric knowledge acquisition module and a question-centric problem solving module. Meanwhile, the QIKT utilizes an item response theory based prediction layer to generate interpretable prediction results. The proposed QIKT model is evaluated on three public real-world educational datasets. The results demonstrate that our approach is superior on the KT prediction task, and it outperforms a wide range of deep learning based KT models in terms of prediction accuracy with better model interpretability. To encourage reproducible results, we have provided all the datasets and code at https://pykt.org/.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards more accurate and interpretable model: Fusing multiple knowledge relations into deep knowledge tracing;Expert Systems with Applications;2024-06

2. Towards Robust Knowledge Tracing Models via k-Sparse Attention;Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval;2023-07-18

3. Enhancing Deep Knowledge Tracing with Auxiliary Tasks;Proceedings of the ACM Web Conference 2023;2023-04-30

4. SC-Ques: A Sentence Completion Question Dataset for English as a Second Language Learners;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3