Yet Another Traffic Classifier: A Masked Autoencoder Based Traffic Transformer with Multi-Level Flow Representation

Author:

Zhao Ruijie,Zhan Mingwei,Deng Xianwen,Wang Yanhao,Wang Yijun,Gui Guan,Xue Zhi

Abstract

Traffic classification is a critical task in network security and management. Recent research has demonstrated the effectiveness of the deep learning-based traffic classification method. However, the following limitations remain: (1) the traffic representation is simply generated from raw packet bytes, resulting in the absence of important information; (2) the model structure of directly applying deep learning algorithms does not take traffic characteristics into account; and (3) scenario-specific classifier training usually requires a labor-intensive and time-consuming process to label data. In this paper, we introduce a masked autoencoder (MAE) based traffic transformer with multi-level flow representation to tackle these problems. To model raw traffic data, we design a formatted traffic representation matrix with hierarchical flow information. After that, we develop an efficient Traffic Transformer, in which packet-level and flow-level attention mechanisms implement more efficient feature extraction with lower complexity. At last, we utilize the MAE paradigm to pre-train our classifier with a large amount of unlabeled data, and perform fine-tuning with a few labeled data for a series of traffic classification tasks. Experiment findings reveal that our method outperforms state-of-the-art methods on five real-world traffic datasets by a large margin. The code is available at https://github.com/NSSL-SJTU/YaTC.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online network traffic classification based on external attention and convolution by IP packet header;Computer Networks;2024-10

2. ShieldGPT: An LLM-based Framework for DDoS Mitigation;Proceedings of the 8th Asia-Pacific Workshop on Networking;2024-08-03

3. Deep learning and pre-training technology for encrypted traffic classification: A comprehensive review;Neurocomputing;2024-08

4. Explainable Stacking Models based on Complementary Traffic Embeddings;2024 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW);2024-07-08

5. Enhancing Flow Embedding Through Trace: A Novel Self-supervised Approach for Encrypted Traffic Classification;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3