Author:
Zhao Ruijie,Zhan Mingwei,Deng Xianwen,Wang Yanhao,Wang Yijun,Gui Guan,Xue Zhi
Abstract
Traffic classification is a critical task in network security and management. Recent research has demonstrated the effectiveness of the deep learning-based traffic classification method. However, the following limitations remain: (1) the traffic representation is simply generated from raw packet bytes, resulting in the absence of important information; (2) the model structure of directly applying deep learning algorithms does not take traffic characteristics into account; and (3) scenario-specific classifier training usually requires a labor-intensive and time-consuming process to label data. In this paper, we introduce a masked autoencoder (MAE) based traffic transformer with multi-level flow representation to tackle these problems. To model raw traffic data, we design a formatted traffic representation matrix with hierarchical flow information. After that, we develop an efficient Traffic Transformer, in which packet-level and flow-level attention mechanisms implement more efficient feature extraction with lower complexity. At last, we utilize the MAE paradigm to pre-train our classifier with a large amount of unlabeled data, and perform fine-tuning with a few labeled data for a series of traffic classification tasks. Experiment findings reveal that our method outperforms state-of-the-art methods on five real-world traffic datasets by a large margin. The code is available at https://github.com/NSSL-SJTU/YaTC.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献