Toward a Perspectivist Turn in Ground Truthing for Predictive Computing

Author:

Cabitza Federico,Campagner Andrea,Basile Valerio

Abstract

Most current Artificial Intelligence applications are based on supervised Machine Learning (ML), which ultimately grounds on data annotated by small teams of experts or large ensemble of volunteers. The annotation process is often performed in terms of a majority vote, however this has been proved to be often problematic by recent evaluation studies. In this article, we describe and advocate for a different paradigm, which we call perspectivism: this counters the removal of disagreement and, consequently, the assumption of correctness of traditionally aggregated gold-standard datasets, and proposes the adoption of methods that preserve divergence of opinions and integrate multiple perspectives in the ground truthing process of ML development. Drawing on previous works which inspired it, mainly from the crowdsourcing and multi-rater labeling settings, we survey the state-of-the-art and describe the potential of our proposal for not only the more subjective tasks (e.g. those related to human language) but also those tasks commonly understood as objective (e.g. medical decision making). We present the main benefits of adopting a perspectivist stance in ML, as well as possible disadvantages, and various ways in which such a stance can be implemented in practice. Finally, we share a set of recommendations and outline a research agenda to advance the perspectivist stance in ML.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3WAUS: A novel three-way adaptive uncertainty-suppressing model for facial expression recognition;Information Sciences;2024-08

2. Disentangling Perceptions of Offensiveness: Cultural and Moral Correlates;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03

3. The Discontent with Intent Estimation In-the-Wild: The Case for Unrealized Intentions;Extended Abstracts of the CHI Conference on Human Factors in Computing Systems;2024-05-11

4. Wikibench: Community-Driven Data Curation for AI Evaluation on Wikipedia;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

5. Policy advice and best practices on bias and fairness in AI;Ethics and Information Technology;2024-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3