OctFormer: Efficient Octree-Based Transformer for Point Cloud Compression with Local Enhancement

Author:

Cui Mingyue,Long Junhua,Feng Mingjian,Li Boyang,Kai Huang

Abstract

Point cloud compression with a higher compression ratio and tiny loss is essential for efficient data transportation. However, previous methods that depend on 3D convolution or frequent multi-head self-attention operations bring huge computations. To address this problem, we propose an octree-based Transformer compression method called OctFormer, which does not rely on the occupancy information of sibling nodes. Our method uses non-overlapped context windows to construct octree node sequences and share the result of a multi-head self-attention operation among a sequence of nodes. Besides, we introduce a locally-enhance module for exploiting the sibling features and a positional encoding generator for enhancing the translation invariance of the octree node sequence. Compared to the previous state-of-the-art works, our method obtains up to 17% Bpp savings compared to the voxel-context-based baseline and saves an overall 99% coding time compared to the attention-based baseline.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LILOC: Leveraging LiDARs for Accurate 3D Localization in Dynamic Indoor Environments;ACM Transactions on Internet of Things;2024-09-13

2. Octree-Retention Fusion: A High-Performance Context Model for Point Cloud Geometry Compression;Proceedings of the 2024 International Conference on Multimedia Retrieval;2024-05-30

3. A Du-Octree based Cross-Attention Model for LiDAR Geometry Compression;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

4. Automated Reconstruction of Existing Building Interior Scene BIMs Using a Feature-Enhanced Point Transformer and an Octree;Applied Sciences;2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3