Abstract
We present a simple and yet effective interpolation-based regularization technique, aiming to improve the generalization of Graph Neural Networks (GNNs) on supervised graph classification. We leverage Mixup, an effective regularizer for vision, where random sample pairs and their labels are interpolated to create synthetic images for training. Unlike images with grid-like coordinates, graphs have arbitrary structure and topology, which can be very sensitive to any modification that alters the graph's semantic meanings. This posts two unanswered questions for Mixup-like regularization schemes: Can we directly mix up a pair of graph inputs? If so, how well does such mixing strategy regularize the learning of GNNs? To answer these two questions, we propose ifMixup, which first adds dummy nodes to make two graphs have the same input size and then simultaneously performs linear interpolation between the aligned node feature vectors and the aligned edge representations of the two graphs. We empirically show that such simple mixing schema can effectively regularize the classification learning, resulting in superior predictive accuracy to popular graph augmentation and GNN methods.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Graph Convolutional Neural Networks In The Companion Model;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14
2. An efficient federated learning framework for graph learning in hyperbolic space;Knowledge-Based Systems;2024-04