Author:
Liu Mengyuan,Meng Fanyang,Chen Chen,Wu Songtao
Abstract
Most skeleton-based action recognition methods assume that the same type of action samples in the training set and the test set share similar motion patterns. However, action samples in real scenarios usually contain novel motion patterns which are not involved in the training set. As it is laborious to collect sufficient training samples to enumerate various types of novel motion patterns, this paper presents a practical skeleton-based action recognition task where the training set contains common motion patterns of action samples and the test set contains action samples that suffer from novel motion patterns. For this task, we present a Mask Graph Convolutional Network (Mask-GCN) to focus on learning action-specific skeleton joints that mainly convey action information meanwhile masking action-agnostic skeleton joints that convey rare action information and suffer more from novel motion patterns. Specifically, we design a policy network to learn layer-wise body masks to construct masked adjacency matrices, which guide a GCN-based backbone to learn stable yet informative action features from dynamic graph structure. Extensive experiments on our newly collected dataset verify that Mask-GCN outperforms most GCN-based methods when testing with various novel motion patterns.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献