KT-Net: Knowledge Transfer for Unpaired 3D Shape Completion

Author:

Cao Zhen,Zhang Wenxiao,Wen Xin,Dong Zhen,Liu Yu-Shen,Xiao Xiongwu,Yang Bisheng

Abstract

Unpaired 3D object completion aims to predict a complete 3D shape from an incomplete input without knowing the correspondence between the complete and incomplete shapes. In this paper, we propose the novel KTNet to solve this task from the new perspective of knowledge transfer. KTNet elaborates a teacher-assistant-student network to establish multiple knowledge transfer processes. Specifically, the teacher network takes complete shape as input and learns the knowledge of complete shape. The student network takes the incomplete one as input and restores the corresponding complete shape. And the assistant modules not only help to transfer the knowledge of complete shape from the teacher to the student, but also judge the learning effect of the student network. As a result, KTNet makes use of a more comprehensive understanding to establish the geometric correspondence between complete and incomplete shapes in a perspective of knowledge transfer, which enables more detailed geometric inference for generating high-quality complete shapes. We conduct comprehensive experiments on several datasets, and the results show that our method outperforms previous methods of unpaired point cloud completion by a large margin. Code is available at https://github.com/a4152684/KT-Net.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A benchmark approach and dataset for large-scale lane mapping from MLS point clouds;International Journal of Applied Earth Observation and Geoinformation;2024-09

2. Stage-Aware Interaction Network for Point Cloud Completion;Electronics;2024-08-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3