MMTN: Multi-Modal Memory Transformer Network for Image-Report Consistent Medical Report Generation

Author:

Cao Yiming,Cui Lizhen,Zhang Lei,Yu Fuqiang,Li Zhen,Xu Yonghui

Abstract

Automatic medical report generation is an essential task in applying artificial intelligence to the medical domain, which can lighten the workloads of doctors and promote clinical automation. The state-of-the-art approaches employ Transformer-based encoder-decoder architectures to generate reports for medical images. However, they do not fully explore the relationships between multi-modal medical data, and generate inaccurate and inconsistent reports. To address these issues, this paper proposes a Multi-modal Memory Transformer Network (MMTN) to cope with multi-modal medical data for generating image-report consistent medical reports. On the one hand, MMTN reduces the occurrence of image-report inconsistencies by designing a unique encoder to associate and memorize the relationship between medical images and medical terminologies. On the other hand, MMTN utilizes the cross-modal complementarity of the medical vision and language for the word prediction, which further enhances the accuracy of generating medical reports. Extensive experiments on three real datasets show that MMTN achieves significant effectiveness over state-of-the-art approaches on both automatic metrics and human evaluation.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3