TrEP: Transformer-Based Evidential Prediction for Pedestrian Intention with Uncertainty

Author:

Zhang Zhengming,Tian Renran,Ding Zhengming

Abstract

With rapid development in hardware (sensors and processors) and AI algorithms, automated driving techniques have entered the public’s daily life and achieved great success in supporting human driving performance. However, due to the high contextual variations and temporal dynamics in pedestrian behaviors, the interaction between autonomous-driving cars and pedestrians remains challenging, impeding the development of fully autonomous driving systems. This paper focuses on predicting pedestrian intention with a novel transformer-based evidential prediction (TrEP) algorithm. We develop a transformer module towards the temporal correlations among the input features within pedestrian video sequences and a deep evidential learning model to capture the AI uncertainty under scene complexities. Experimental results on three popular pedestrian intent benchmarks have verified the effectiveness of our proposed model over the state-of-the-art. The algorithm performance can be further boosted by controlling the uncertainty level. We systematically compare human disagreements with AI uncertainty to further evaluate AI performance in confusing scenes. The code is released at https://github.com/zzmonlyyou/TrEP.git.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uncertainty Differences in Computing Hierarchical Pedestrian Behaviors;Proceedings of the Human Factors and Ergonomics Society Annual Meeting;2024-09-08

2. Pedestrian Crossing Intention Prediction Based on Cross-Modal Transformer and Uncertainty-Aware Multi-Task Learning for Autonomous Driving;IEEE Transactions on Intelligent Transportation Systems;2024-09

3. Behavioral Intention Prediction in Driving Scenes: A Survey;IEEE Transactions on Intelligent Transportation Systems;2024-08

4. Enhancing Text Authenticity: A Novel Hybrid Approach for AI-Generated Text Detection;2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI);2024-05-24

5. Logistics Network Parcel Emergency Dispatch and Structural Optimization Model;2024 Second International Conference on Data Science and Information System (ICDSIS);2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3