Phrase-Level Temporal Relationship Mining for Temporal Sentence Localization

Author:

Zheng Minghang,Li Sizhe,Chen Qingchao,Peng Yuxin,Liu Yang

Abstract

In this paper, we address the problem of video temporal sentence localization, which aims to localize a target moment from videos according to a given language query. We observe that existing models suffer from a sheer performance drop when dealing with simple phrases contained in the sentence. It reveals the limitation that existing models only capture the annotation bias of the datasets but lack sufficient understanding of the semantic phrases in the query. To address this problem, we propose a phrase-level Temporal Relationship Mining (TRM) framework employing the temporal relationship relevant to the phrase and the whole sentence to have a better understanding of each semantic entity in the sentence. Specifically, we use phrase-level predictions to refine the sentence-level prediction, and use Multiple Instance Learning to improve the quality of phrase-level predictions. We also exploit the consistency and exclusiveness constraints of phrase-level and sentence-level predictions to regularize the training process, thus alleviating the ambiguity of each phrase prediction. The proposed approach sheds light on how machines can understand detailed phrases in a sentence and their compositions in their generality rather than learning the annotation biases. Experiments on the ActivityNet Captions and Charades-STA datasets show the effectiveness of our method on both phrase and sentence temporal localization and enable better model interpretability and generalization when dealing with unseen compositions of seen concepts. Code can be found at https://github.com/minghangz/TRM.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3