Multi-Action Dialog Policy Learning from Logged User Feedback

Author:

Zhang Shuo,Zhao Junzhou,Wang Pinghui,Wang Tianxiang,Liang Zi,Tao Jing,Huang Yi,Feng Junlan

Abstract

Multi-action dialog policy (MADP), which generates multiple atomic dialog actions per turn, has been widely applied in task-oriented dialog systems to provide expressive and efficient system responses. Existing MADP models usually imitate action combinations from the labeled multi-action dialog samples. Due to data limitations, they generalize poorly toward unseen dialog flows. While reinforcement learning-based methods are proposed to incorporate the service ratings from real users and user simulators as external supervision signals, they suffer from sparse and less credible dialog-level rewards. To cope with this problem, we explore to improve MADPL with explicit and implicit turn-level user feedback received for historical predictions (i.e., logged user feedback) that are cost-efficient to collect and faithful to real-world scenarios. The task is challenging since the logged user feedback provides only partial label feedback limited to the particular historical dialog actions predicted by the agent. To fully exploit such feedback information, we propose BanditMatch, which addresses the task from a feedback-enhanced semi-supervised learning perspective with a hybrid learning objective of SSL and bandit learning. BanditMatch integrates pseudo-labeling methods to better explore the action space through constructing full label feedback. Extensive experiments show that our BanditMatch improves MADPL over the state-of-the-art methods by generating more concise and informative responses. The source code and the appendix of this paper can be obtained from https://github.com/ShuoZhangXJTU/BanditMatch.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3