Towards Complex Scenarios: Building End-to-End Task-Oriented Dialogue System across Multiple Knowledge Bases
-
Published:2023-06-26
Issue:11
Volume:37
Page:13483-13491
-
ISSN:2374-3468
-
Container-title:Proceedings of the AAAI Conference on Artificial Intelligence
-
language:
-
Short-container-title:AAAI
Author:
Qin Libo,Li Zhouyang,Yu Qiying,Wang Lehan,Che Wanxiang
Abstract
With the success of the sequence-to-sequence model, end-to-end task-oriented dialogue systems (EToDs) have obtained remarkable progress. However, most existing EToDs are limited to single KB settings where dialogues can be supported by a single KB, which is still far from satisfying the requirements of some complex applications (multi-KBs setting). In this work, we first empirically show that the existing single-KB EToDs fail to work on multi-KB settings that require models to reason across various KBs. To solve this issue, we take the first step to consider the multi-KBs scenario in EToDs and introduce a KB-over-KB Heterogeneous Graph Attention Network (KoK-HAN) to facilitate model to reason over multiple KBs. The core module is a triple-connection graph interaction layer that can model different granularity levels of interaction information across different KBs (i.e., intra-KB connection, inter-KB connection and dialogue-KB connection). Experimental results confirm the superiority of our model for multiple KBs reasoning.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Pro-HAN: A Heterogeneous Graph Attention Network for Profile-based Spoken Language Understanding;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14