Can Bad Teaching Induce Forgetting? Unlearning in Deep Networks Using an Incompetent Teacher

Author:

Chundawat Vikram S,Tarun Ayush K,Mandal Murari,Kankanhalli Mohan

Abstract

Machine unlearning has become an important area of research due to an increasing need for machine learning (ML) applications to comply with the emerging data privacy regulations. It facilitates the provision for removal of certain set or class of data from an already trained ML model without requiring retraining from scratch. Recently, several efforts have been put in to make unlearning to be effective and efficient. We propose a novel machine unlearning method by exploring the utility of competent and incompetent teachers in a student-teacher framework to induce forgetfulness. The knowledge from the competent and incompetent teachers is selectively transferred to the student to obtain a model that doesn't contain any information about the forget data. We experimentally show that this method generalizes well, is fast and effective. Furthermore, we introduce the zero retrain forgetting (ZRF) metric to evaluate any unlearning method. Unlike the existing unlearning metrics, the ZRF score does not depend on the availability of the expensive retrained model. This makes it useful for analysis of the unlearned model after deployment as well. We present results of experiments conducted for random subset forgetting and class forgetting on various deep networks and across different application domains. Code is at: https://github.com/vikram2000b/bad-teaching- unlearning

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Goldfish: An Efficient Federated Unlearning Framework;2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN);2024-06-24

2. SFTC: Machine Unlearning via Selective Fine-tuning and Targeted Confusion;European Interdisciplinary Cybersecurity Conference;2024-06-05

3. A Study Regarding Machine Unlearning on Facial Attribute Data;2024 IEEE 18th International Conference on Automatic Face and Gesture Recognition (FG);2024-05-27

4. Few-shot Unlearning;2024 IEEE Symposium on Security and Privacy (SP);2024-05-19

5. Breaking the Trilemma of Privacy, Utility, and Efficiency via Controllable Machine Unlearning;Proceedings of the ACM Web Conference 2024;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3