Wasserstein Graph Distance Based on L1–Approximated Tree Edit Distance between Weisfeiler–Lehman Subtrees

Author:

Fang Zhongxi,Huang Jianming,Su Xun,Kasai Hiroyuki

Abstract

The Weisfeiler-Lehman (WL) test is a widely used algorithm in graph machine learning, including graph kernels, graph metrics, and graph neural networks. However, it focuses only on the consistency of the graph, which means that it is unable to detect slight structural differences. Consequently, this limits its ability to capture structural information, which also limits the performance of existing models that rely on the WL test. This limitation is particularly severe for traditional metrics defined by the WL test, which cannot precisely capture slight structural differences. In this paper, we propose a novel graph metric called the Wasserstein WL Subtree (WWLS) distance to address this problem. Our approach leverages the WL subtree as structural information for node neighborhoods and defines node metrics using the L1-approximated tree edit distance (L1-TED) between WL subtrees of nodes. Subsequently, we combine the Wasserstein distance and the L1-TED to define the WWLS distance, which can capture slight structural differences that may be difficult to detect using conventional metrics. We demonstrate that the proposed WWLS distance outperforms baselines in both metric validation and graph classification experiments.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accelerating Unbalanced Optimal Transport Problem Using Dynamic Penalty Updating;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Safe Screening for ℓ2-penalized Unbalanced Optimal Transport Problem;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. Key Vertex Pairs Extraction for Graph Classification Based on Probability Distribution Learning;2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC);2024-02-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3