Graph Anomaly Detection via Multi-Scale Contrastive Learning Networks with Augmented View

Author:

Duan Jingcan,Wang Siwei,Zhang Pei,Zhu En,Hu Jingtao,Jin Hu,Liu Yue,Dong Zhibin

Abstract

Graph anomaly detection (GAD) is a vital task in graph-based machine learning and has been widely applied in many real-world applications. The primary goal of GAD is to capture anomalous nodes from graph datasets, which evidently deviate from the majority of nodes. Recent methods have paid attention to various scales of contrastive strategies for GAD, i.e., node-subgraph and node-node contrasts. However, they neglect the subgraph-subgraph comparison information which the normal and abnormal subgraph pairs behave differently in terms of embeddings and structures in GAD, resulting in sub-optimal task performance. In this paper, we fulfill the above idea in the proposed multi-view multi-scale contrastive learning framework with subgraph-subgraph contrast for the first practice. To be specific, we regard the original input graph as the first view and generate the second view by graph augmentation with edge modifications. With the guidance of maximizing the similarity of the subgraph pairs, the proposed subgraph-subgraph contrast contributes to more robust subgraph embeddings despite of the structure variation. Moreover, the introduced subgraph-subgraph contrast cooperates well with the widely-adopted node-subgraph and node-node contrastive counterparts for mutual GAD performance promotions. Besides, we also conduct sufficient experiments to investigate the impact of different graph augmentation approaches on detection performance. The comprehensive experimental results well demonstrate the superiority of our method compared with the state-of-the-art approaches and the effectiveness of the multi-view subgraph pair contrastive strategy for the GAD task. The source code is released at https://github.com/FelixDJC/GRADATE.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-view discriminative edge heterophily contrastive learning network for attributed graph anomaly detection;Expert Systems with Applications;2024-12

2. Motif-Consistent Counterfactuals with Adversarial Refinement for Graph-level Anomaly Detection;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. Multi-Network Graph Contrastive Learning for Cancer Driver Gene Identification;IEEE Transactions on Network Science and Engineering;2024-07

4. A Full-Granularity Anomaly Detection Model Based on Attribute-Enhanced Sampling;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

5. Simultaneously Detecting Node and Edge Level Anomalies on Heterogeneous Attributed Graphs;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3