Tiered State Expansion in Optimization Crosswords

Author:

Botea Adi,Bulitko Vadim

Abstract

Crosswords puzzles continue to be a popular form of entertainment. In Artificial Intelligence (AI), crosswords can be represented as a constraint problem, and attacked with a combinatorial search algorithm. In combinatorial search, the branching factor can play a crucial role on the search space size and thus on the search effort. We introduce tiered state expansion, a completeness-preserving technique to reduce the branching factor. In problems where the successors of a state correspond to the values in the domain of a state variable selected for instantiation, the domain is partitioned into two subsets called tiers. The instantiation of the two tiers is performed at different times, with tier 1 first and tier 2 in a subsequent state. Before a tier-2 instantiation occurs, its set of applicable values can shrink substantially due to constraint propagation, with a corresponding reduction of the branching factor. We apply tiered state expansion to a constraint optimization problem modeled on the Romanian Crosswords Competition, empirically demonstrating a substantial improvement. Tiered state expansion allows finding a full solution, with an average CPU time of up to 1.2 minutes, to many puzzles that would otherwise time out after 4 hours.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extended Seeds in Optimization Crosswords;2024 IEEE Conference on Games (CoG);2024-08-05

2. Generating and Solving Champion-Level Romanian Crosswords Puzzles;2023 IEEE Conference on Games (CoG);2023-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3