Author:
Kreminski Max,Dickinson Melanie,Mateas Michael
Abstract
Story sifters attempt to automatically or semi-automatically extract nuggets of compelling narrative content from vast chronicles of game or simulation events. Though sifting has successfully been used to enable novel computational narrative play experiences, its utility is limited by the fundamentally retrospective nature of existing sifters, which can only recognize storyful event sequences once they have fully played out. To address this limitation, we introduce Winnow: a domain-specific language for specifying story sifting patterns that can be executed incrementally to detect potentially storyful event sequences while they are still playing out. We evaluate Winnow by applying it to several specific use cases and show that it is well-suited to the implementation of prospective as well as retrospective narrative intelligence.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献