Combinatorial Q-Learning for Dou Di Zhu

Author:

You Yang,Li Liangwei,Guo Baisong,Wang Weiming,Lu Cewu

Abstract

Deep reinforcement learning (DRL) has gained a lot of attention in recent years, and has been proven to be able to play Atari games and Go at or above human levels. However, those games are assumed to have a small fixed number of actions and could be trained with a simple CNN network. In this paper, we study a special class of Asian popular card games called Dou Di Zhu, in which two adversarial groups of agents must consider numerous card combinations at each time step, leading to huge number of actions. We propose a novel method to handle combinatorial actions, which we call combinatorial Q-learning (CQL). We employ a two-stage network to reduce action space and also leverage order-invariant max-pooling operations to extract relationships between primitive actions. Results show that our method prevails over other baseline learning algorithms like naive Q-learning and A3C. We develop an easy-to-use card game environments and train all agents adversarially from sractch, with only knowledge of game rules and verify that our agents are comparative to humans. Our code to reproduce all reported results is available on github.com/qq456cvb/doudizhu-C.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on DouDiZhu Model Based on Deep Reinforcement Learning;2023 7th Asian Conference on Artificial Intelligence Technology (ACAIT);2023-11-10

2. DouRN: Improving DouZero by Residual Neural Networks;2023 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC);2023-11-02

3. DanZero: Mastering GuanDan Game with Reinforcement Learning;2023 IEEE Conference on Games (CoG);2023-08-21

4. JP-DouZero: an enhanced DouDiZhu AI based on reinforcement learning with peasant collaboration and intrinsic rewards;2023 9th International Conference on Big Data Computing and Communications (BigCom);2023-08-04

5. Deep Reinforcement Learning for Two-Player DouDizhu;2022 Euro-Asia Conference on Frontiers of Computer Science and Information Technology (FCSIT);2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3