Abstract
Cooperative Pathfinding is a multi-agent path planning problem where agents must find non-colliding routes to separate destinations, given full information about the routes of other agents. This paper presents three new algorithms for efficiently solving this problem, suitable for use in Real-Time Strategy games and other real-time environments. The algorithms are decoupled approaches that break down the problem into a series of single-agent searches. Cooperative A* (CA*) searches space-time for a non-colliding route. Hierarchical Cooperative A* (HCA*) uses an abstract heuristic to boost performance. Finally, Windowed Hierarchical Cooperative A* (WHCA*) limits the space-time search depth to a dynamic window, spreading computation over the duration of the route. The algorithms are applied to a series of challenging, maze-like environments, and compared to A* with Local Repair (the current video-games industry standard). The results show that the new algorithms, especially WHCA*, are robust and efficient solutions to the Cooperative Pathfinding problem, finding more successful routes and following better paths than Local Repair A*
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献