Optimal Column Subset Selection by A-Star Search

Author:

Arai Hiromasa,Maung Crystal,Schweitzer Haim

Abstract

Approximating a matrix by a small subset of its columns is a known problem in numerical linear algebra. Algorithms that address this problem have been used in areas which include, among others, sparse approximation, unsupervised feature selection, data mining, and knowledge representation. Such algorithms were investigated since the 1960's, with recent results that use randomization. The problem is believed to be NP-Hard, and to the best of our knowledge there are no previously published algorithms aimed at computing optimal solutions. We show how to model the problem as a graph search, and propose a heuristic based on eigenvalues of related matrices. Applying the A* search strategy with this heuristic is guaranteed to find the optimal solution. Experimental results on common datasets show that the proposed algorithm can effectively select columns from moderate size matrices, typically improving by orders of magnitude the run time of exhaustive search. We also show how to combine the proposed algorithm with other non-optimal (but much faster) algorithms in a ``two stage'' framework, which is guaranteed to improve the accuracy of the other algorithms.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3