Author:
Gagne David,McGovern Amy,Jerald Jerald,Coniglio Michael,Correia James,Xue Ming
Abstract
Hail causes billions of dollars in losses by damaging buildings, vehicles, and crops. Improving the spatial and temporal accuracy of hail forecasts would allow people to mitigate hail damage. We have developed an approach to forecasting hail that identifies potential hail storms in storm-scale numerical weather prediction models and matches them with observed hailstorms. Machine learning models, including random forests, gradient boosting trees, and linear regression, are used to predict the expected hail size from each forecast storm. The individual hail size forecasts are merged with a spatial neighborhood ensemble probability technique to produce a consensus probability of hail at least 25.4 mm in diameter. The system was evaluated during the 2014 National Oceanic and Atmospheric Administration Hazardous Weather Testbed Experimental Forecast Program and compared with a physics-based hail size model. The machine-learning-based technique shows advantages in producing smaller size errors and more reliable probability forecasts. The machine learning approaches correctly predicted the location and extent of a significant hail event in eastern Nebraska and a marginal severe hail event in Colorado.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献