Day-Ahead Hail Prediction Integrating Machine Learning with Storm-Scale Numerical Weather Models

Author:

Gagne David,McGovern Amy,Jerald Jerald,Coniglio Michael,Correia James,Xue Ming

Abstract

Hail causes billions of dollars in losses by damaging buildings, vehicles, and crops. Improving the spatial and temporal accuracy of hail forecasts would allow people to mitigate hail damage. We have developed an approach to forecasting hail that identifies potential hail storms in storm-scale numerical weather prediction models and matches them with observed hailstorms. Machine learning models, including random forests, gradient boosting trees, and linear regression, are used to predict the expected hail size from each forecast storm. The individual hail size forecasts are merged with a spatial neighborhood ensemble probability technique to produce a consensus probability of hail at least 25.4 mm in diameter. The system was evaluated during the 2014 National Oceanic and Atmospheric Administration Hazardous Weather Testbed Experimental Forecast Program and compared with a physics-based hail size model. The machine-learning-based technique shows advantages in producing smaller size errors and more reliable probability forecasts. The machine learning approaches correctly predicted the location and extent of a significant hail event in eastern Nebraska and a marginal severe hail event in Colorado.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis, characterization, prediction, and attribution of extreme atmospheric events with machine learning and deep learning techniques: a review;Theoretical and Applied Climatology;2023-08-28

2. Climate change prediction using deep learning;5TH INTERNATIONAL CONFERENCE ON INNOVATIVE DESIGN, ANALYSIS & DEVELOPMENT PRACTICES IN AEROSPACE & AUTOMOTIVE ENGINEERING: I-DAD’22;2023

3. Can We Integrate Spatial Verification Methods into Neural Network Loss Functions for Atmospheric Science?;Artificial Intelligence for the Earth Systems;2022-10

4. Prediction of Rainfall in Bangladesh: A Case Study of the Machine Learning;2022 IEEE 7th International conference for Convergence in Technology (I2CT);2022-04-07

5. Multilayer Perceptron Neural Network Supervised Learning Based Solar Radiation Prediction;Lecture Notes in Electrical Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3