Cooperating with Unknown Teammates in Complex Domains: A Robot Soccer Case Study of Ad Hoc Teamwork

Author:

Barrett Samuel,Stone Peter

Abstract

Many scenarios require that robots work together as a team in order to effectively accomplish their tasks. However, pre-coordinating these teams may not always be possible given the growing number of companies and research labs creating these robots. Therefore, it is desirable for robots to be able to reason about ad hoc teamwork and adapt to new teammates on the fly. Past research on ad hoc teamwork has focused on relatively simple domains, but this paper demonstrates that agents can reason about ad hoc teamwork in complex scenarios. To handle these complex scenarios, we introduce a new algorithm, PLASTIC–Policy, that builds on an existing ad hoc teamwork approach. Specifically, PLASTIC– Policy learns policies to cooperate with past teammates and reuses these policies to quickly adapt to new teammates. This approach is tested in the 2D simulation soccer league of RoboCup using the half field offense task.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Selective policy transfer in multi-agent systems with sparse interactions;Knowledge-Based Systems;2024-09

2. HOTSPOT: An ad hoc teamwork platform for mixed human-robot teams;PLOS ONE;2024-06-28

3. Learning to Communicate Using Action Probabilities for Multi-Agent Cooperation;2023 IEEE International Conference on Agents (ICA);2023-12-04

4. Classifying ambiguous identities in hidden-role Stochastic games with multi-agent reinforcement learning;Autonomous Agents and Multi-Agent Systems;2023-08-11

5. Leveraging Fitness Critics To Learn Robust Teamwork;Proceedings of the Genetic and Evolutionary Computation Conference;2023-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3