Robust Subspace Clustering via Thresholding Ridge Regression

Author:

Peng Xi,Yi Zhang,Tang Huajin

Abstract

Given a data set from a union of multiple linear subspaces, a robust subspace clustering algorithm fits each group of data points with a low-dimensional subspace and then clusters these data even though they are grossly corrupted or sampled from the union of dependent subspaces. Under the framework of spectral clustering, recent works using sparse representation, low rank representation and their extensions achieve robust clustering results by formulating the errors (e.g., corruptions) into their objective functions so that the errors can be removed from the inputs. However, these approaches have suffered from the limitation that the structure of the errors should be known as the prior knowledge. In this paper, we present a new method of robust subspace clustering by eliminating the effect of the errors from the projection space (representation) rather than from the input space. We firstly prove that ell_1-, ell_2-, and ell_infty-norm-based linear projection spaces share the property of intra-subspace projection dominance, i.e., the coefficients over intra-subspace data points are larger than those over inter-subspace data points. Based on this property, we propose a robust and efficient subspace clustering algorithm, called Thresholding Ridge Regression (TRR). TRR calculates the ell2-norm-based coefficients of a given data set and performs a hard thresholding operator; and then the coefficients are used to build a similarity graph for clustering. Experimental studies show that TRR outperforms the state-of-the-art methods with respect to clustering quality, robustness, and time-saving.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two-step affinity matrix learning for multi-view subspace clustering;Expert Systems with Applications;2024-05

2. Fine-Grained Essential Tensor Learning for Robust Multi-View Spectral Clustering;IEEE Transactions on Image Processing;2024

3. Robust Regularized Locality Preserving Indexing for Fiedler Vector Estimation;IEEE Open Journal of Signal Processing;2024

4. Contrastive Kernel Subspace Clustering;Neural Information Processing;2023-11-15

5. Preserving Local and Global Information: An Effective Metric-based Subspace Clustering;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3