Relational Stacked Denoising Autoencoder for Tag Recommendation

Author:

Wang Hao,Shi Xingjian,Yeung Dit-Yan

Abstract

Tag recommendation has become one of the most important ways of organizing and indexing online resources like articles, movies, and music. Since tagging information is usually very sparse, effective learning of the content representation for these resources is crucial to accurate tag recommendation. Recently, models proposed for tag recommendation, such as collaborative topic regression and its variants, have demonstrated promising accuracy. However, a limitation of these models is that, by using topic models like latent Dirichlet allocation as the key component, the learned representation may not be compact and effective enough. Moreover, since relational data exist as an auxiliary data source in many applications, it is desirable to incorporate such data into tag recommendation models. In this paper, we start with a deep learning model called stacked denoising autoencoder (SDAE) in an attempt to learn more effective content representation. We propose a probabilistic formulation for SDAE and then extend it to a relational SDAE (RSDAE) model. RSDAE jointly performs deep representation learning and relational learning in a principled way under a probabilistic framework. Experiments conducted on three real datasets show that both learning more effective representation and learning from relational data are beneficial steps to take to advance the state of the art.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diabetic Retinopathy Classification With Deep Learning via Fundus Images: A Short Survey;IEEE Access;2024

2. Embedded Optoelectronics in Fiberglass PCBs and Applications for Robotics with Human Interface and ML-Enabled Detection;2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2023-10-01

3. Grid Transient Simulation Using Attention-Based Data Augmentation Technique with Supercomputing;2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT);2023-06-16

4. Auto-Encoders in Deep Learning—A Review with New Perspectives;Mathematics;2023-04-07

5. Citation Recommendation Based on Knowledge Graph and Multi-task Learning;Knowledge Science, Engineering and Management;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3