Learning to Manipulate Unknown Objects in Clutter by Reinforcement

Author:

Boularias Abdeslam,Bagnell James,Stentz Anthony

Abstract

We present a fully autonomous robotic system for grasping objects in dense clutter. The objects are unknown and have arbitrary shapes. Therefore, we cannot rely on prior models. Instead, the robot learns online, from scratch, to manipulate the objects by trial and error. Grasping objects in clutter is significantly harder than grasping isolated objects, because the robot needs to push and move objects around in order to create sufficient space for the fingers. These pre-grasping actions do not have an immediate utility, and may result in unnecessary delays. The utility of a pre-grasping action can be measured only by looking at the complete chain of consecutive actions and effects. This is a sequential decision-making problem that can be cast in the reinforcement learning framework. We solve this problem by learning the stochastic transitions between the observed states, using nonparametric density estimation. The learned transition function is used only for re-calculating the values of the executed actions in the observed states, with different policies. Values of new state-actions are obtained by regressing the values of the executed actions. The state of the system at a given time is a depth (3D) image of the scene. We use spectral clustering for detecting the different objects in the image. The performance of our system is assessed on a robot with real-world objects.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3