Author:
Chen Jun,Wang Chaokun,Bai Yiyuan
Abstract
Large-scale distributed computing has made available the resources necessary to solve "AI-hard" problems. As a result, it becomes feasible to automate the processing of such problems, but accuracy is not very high due to the conceptual difficulty of these problems. In this paper, we integrated crowdsourcing with MapReduce to provide a scalable innovative human-machine solution to AI-hard problems, which is called CrowdMR. In CrowdMR, the majority of problem instances are automatically processed by machine while the troublesome instances are redirected to human via crowdsourcing. The results returned from crowdsourcing are validated in the form of CAPTCHA (Completely Automated Public Turing test to Tell Computers and Humans Apart) before adding to the output. An incremental scheduling method was brought forward to combine the results from machine and human in a "pay-as-you-go" way.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献