A Comparative Study of Demographic Attribute Inference in Twitter

Author:

Chen Xin,Wang Yu,Agichtein Eugene,Wang Fusheng

Abstract

Social media platforms have become a major gateway to receive and analyze public opinions. Understandingusers can provide invaluable context information of their social media posts and significantly improve traditional opinion analysis models. Demographic attributes,such as ethnicity, gender, age, among others,have been extensively applied to characterize social mediausers. While studies have shown that user groups formed by demographic attributes can have coherent opinions towards political issues, these attributes are often not explicitly coded by users through their profiles.Previous work has demonstrated the effectiveness of different user signals such as users’ posts and names in determining demographic attributes. Yet, these efforts mostly evaluate linguistic signals from users’ postsand train models from artificially balanced datasets. In this paper, we propose a comprehensive list of user signals:self-descriptions and posts aggregated from users’ friends and followers, users’ profile images, and users’ names.We provide a comparative study of these signalsside-by-side in the tasks on inferring three major demographic attributes, namely ethnicity, gender, and age.We utilize a realistic unbalanced datasets that share similar demographic makeups in Twitter for training modelsand evaluation experiments. Our experiments indicate that self-descriptions provide the strongest signal for ethnicity and age inference and clearly improve the overall performance when combined with tweets. Profile images for gender inference have the highest precision score with overall score close to the best result in our setting. This suggests that signals in self descriptions and profile images have potentials to facilitate demographic attribute inferences in Twitter, and are promising for future investigation.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3