Interactive Consensus Agreement Games for Labeling Images

Author:

Upchurch Paul,Sedra Daniel,Mullen Andrew,Hirsh Haym,Bala Kavita

Abstract

Scene understanding algorithms in computer vision are improving dramatically by training deep convolutional neural networks on millions of accurately annotated images. Collecting large-scale datasets for this kind of training is challenging, and the learning algorithms are only as good as the data they train on. Training annotations are often obtained by taking the majority label from independent crowdsourced workers using platforms such as Amazon Mechanical Turk. However, the accuracy of the resulting annotations can vary, with the hardest-to-annotate samples having prohibitively low accuracy. Our insight is that in cases where independent worker annotations are poor more accurate results can be obtained by having workers collaborate. This paper introduces consensus agreement games, a novel method for assigning annotations to images by the agreement of multiple consensuses of small cliques of workers. We demonstrate that this approach reduces error by 37.8% on two different datasets at a cost of $0.10 or $0.17 per annotation. The higher cost is justified because our method does not need to be run on the entire dataset. Ultimately, our method enables us to more accurately annotate images and build more challenging training datasets for learning algorithms.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding the individual labor supply and wages on digital labor platforms: A microworker perspective;International Journal of Information Management;2024-12

2. Closing the Knowledge Gap in Designing Data Annotation Interfaces for AI-powered Disaster Management Analytic Systems;Proceedings of the 29th International Conference on Intelligent User Interfaces;2024-03-18

3. Quality Control of Crowd Labeling for Improving the Quality of Peer Assessments;2023 IEEE Frontiers in Education Conference (FIE);2023-10-18

4. Accurate Label Refinement From Multiannotator of Remote Sensing Data;IEEE Transactions on Geoscience and Remote Sensing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3