Author:
O'Connor Brendan,Krieger Michel,Ahn David
Abstract
We present TweetMotif, an exploratory search applica- tion for Twitter. Unlike traditional approaches to in- formation retrieval, which present a simple list of mes- sages, TweetMotif groups messages by frequent signif- icant terms — a result set’s subtopics — which facili- tate navigation and drilldown through a faceted search interface. The topic extraction system is based on syn- tactic filtering, language modeling, near-duplicate de- tection, and set cover heuristics. We have used Tweet- Motif to deflate rumors, uncover scams, summarize sentiment, and track political protests in real-time. A demo of TweetMotif, plus its source code, is available at http://tweetmotif.com.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献