Author:
Tsur Oren,Davidov Dmitry,Rappoport Ari
Abstract
Sarcasm is a sophisticated form of speech act widely used in online communities. Automatic recognition of sarcasm is, however, a novel task. Sarcasm recognition could contribute to the performance of review summarization and ranking systems. This paper presents SASI, a novel Semi-supervised Algorithm for Sarcasm Identification that recognizes sarcastic sentences in product reviews. SASI has two stages: semi-supervised pattern acquisition, and sarcasm classification. We experimented on a data set of about 66000 Amazon reviews for various books and products. Using a gold standard in which each sentence was tagged by 3 annotators, we obtained precision of 77% and recall of 83.1% for identifying sarcastic sentences. We found some strong features that characterize sarcastic utterances. However, a combination of more subtle pattern-based features proved more promising in identifying the various facets of sarcasm. We also speculate on the motivation for using sarcasm in online communities and social networks.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献