Provable Indefinite-Horizon Real-Time Planning for Repetitive Tasks

Author:

Islam Fahad,Salzman Oren,Likhachev Maxim

Abstract

In many robotic manipulation scenarios, robots often have to perform highly-repetitive tasks in structured environments e.g. sorting mail in a mailroom or pick and place objects on a conveyor belt. In this work we are interested in settings where the tasks are similar, yet not identical (e.g., due to uncertain orientation of objects) and motion planning needs to be extremely fast. Preprocessing-based approaches prove to be very beneficial in these settings—they analyze the configuration-space offline to generate some auxiliary information which can then be used in the query phase to speedup planning times. Typically, the tighter the requirement is on query times the larger the memory footprint will be. In particular, for high-dimensional spaces, providing real-time planning capabilities is extremely challenging. While there are planners that guarantee real-time performance by limiting the planning horizon, we are not aware of general-purpose planners capable of doing it for indefinite horizon (i.e., planning to the goal). To this end, we propose a preprocessingbased method that provides provable bounds on the query time while incurring only a small amount of memory overhead in the query phase. We evaluate our method on a 7-DOF robot arm and show a speedup of over tenfold in query time when compared to the PRM algorithm.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preprocessing-Based Planning for Utilizing Contacts in Semi-Structured High-Precision Insertion Tasks;IEEE Robotics and Automation Letters;2023-11

2. Dynamic Multi-Query Motion Planning with Differential Constraints and Moving Goals;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

3. Toward certifiable optimal motion planning for medical steerable needles;The International Journal of Robotics Research;2023-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3