Bound to Plan: Exploiting Classical Heuristics via Automatic Translations of Tail-Recursive HTN Problems

Author:

Alford Ron,Behnke Gregor,Höller Daniel,Bercher Pascal,Biundo Susanne,Aha David

Abstract

Hierarchical Task Network (HTN) planning is a formalism that can express constraints which cannot easily be expressed by classical (non-hierarchical) planning approaches. It enables reasoning about procedural structures and domain-specific search control knowledge. Yet the cornucopia of modern heuristic search techniques remains largely unincorporated in current HTN planners, in part because it is not clear how to estimate the goal distance for a partially-ordered task network. When using SHOP2-style progression, a task network of yet unprocessed tasks is maintained during search. In the general case it can grow arbitrarily large. However, many — if not most — existing HTN domains have a certain structure (called tail-recursive) where the network's size is bounded. We show how this bound can be calculated and exploited to automatically translate tail-recursive HTN problems into non-hierarchical STRIPS representations, which allows using both hierarchical structures and classical planning heuristics. In principle, the approach can also be applied to non-tail-recursive HTNs by incrementally increasing the bound. We give three translations with different advantages and present the results of an empirical evaluation with several HTN domains that are translated to PDDL and solved by two current classical planning systems. Our results show that we can automatically find practical bounds for solving partially-ordered HTN problems. We also show that classical planners perform similarly with our automatic translations versus a previous hand-bounded HTN translation which is restricted to totally-ordered problems.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient HTN to STRIPS Encodings for Concurrent Planning;2023 IEEE 35th International Conference on Tools with Artificial Intelligence (ICTAI);2023-11-06

2. Hierarchical planning and reasoning about partially ordered plans—From theory to practice;AI Magazine;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3