Optimizing Parameters for Uncertain Execution and Rescheduling Robustness

Author:

Chi Wayne,Agrawal Jagriti,Chien Steve,Fosse Elyse,Guduri Usha

Abstract

We describe use of Monte Carlo simulation to optimize schedule parameters for execution and rescheduling robustness in the face of execution uncertainties. We search in the activity input parameter space where a) the onboard scheduler is a one shot non-backtracking scheduler and b) the activity input priority determines the order in which activities are considered for placement in the schedule. We show that simulation driven search for activity parameters outperforms static priority assignment. Our approach can be viewed as using simulation feedback to determine problem specific heuristics e.g. Squeaky Wheel Optimization. These techniques are currently baselined for use in the ground operations of NASA’s next planetary rover, the Mars 2020 rover.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3