Planning for Concurrent Action Executions Under Action Duration Uncertainty Using Dynamically Generated Bayesian Networks
-
Published:2021-05-25
Issue:
Volume:20
Page:10-17
-
ISSN:2334-0843
-
Container-title:Proceedings of the International Conference on Automated Planning and Scheduling
-
language:
-
Short-container-title:ICAPS
Author:
Beaudry Eric,Kabanza Froduald,Michaud Francois
Abstract
An interesting class of planning domains, including planning for daily activities of Mars rovers, involves achievement of goals with time constraints and concurrent actions with probabilistic durations. Current probabilistic approaches, which rely on a discrete time model, introduce a blow up in the search state-space when the two factors of action concurrency and action duration uncertainty are combined. Simulation-based and sampling probabilistic planning approaches would cope with this state explosion by avoiding storing all the explored states in memory, but they remain approximate solution approaches. In this paper, we present an alternative approach relying on a continuous time model which avoids the state explosion caused by time stamping in the presence of action concurrency and action duration uncertainty. Time is represented as a continuous random variable. The dependency between state time variables is conveyed by a Bayesian network, which is dynamically generated by a state-based forward-chaining search based on the action descriptions. A generated plan is characterized by a probability of satisfying a goal. The evaluation of this probability is done by making a query the Bayesian network.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Digital Twins for Autonomic Cloud Application Management;Advanced Information Networking and Applications;2022