Feasibility Study: Using Highways for Bounded-Suboptimal Multi-Agent Path Finding

Author:

Cohen Liron,Uras Tansel,Koenig Sven

Abstract

Multi-agent path-finding (MAPF) is important for applications such as the kind of warehousing done by Kiva systems. Solving the problem optimally is NP-hard, yet finding low-cost solutions is important. Bounded-suboptimal MAPF algorithms, such as enhanced conflict-based search (ECBS), often do not perform well in warehousing domains with many agents. We therefore develop bounded-suboptimal MAPF algorithms, called CBS+HWY and ECBS+HWY, that exploit the problem structure of a given MAPF instance by finding paths for the agents that include edges from user-provided highways, which encourages a global behavior of the agents that avoids collisions. On the theoretical side, we develop a simple approach that uses highways for MAPF and provides suboptimality guarantees. On the experimental side, we demonstrate that ECBS+HWY can decrease the runtimes and solution costs of ECBS in Kiva-like domains with many agents if the highways capture the problem structures well.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incremental Conflict-Based Search for Multi-agent Path Finding in Dynamic Environment;IFIP Advances in Information and Communication Technology;2024

2. A review of graph-based multi-agent pathfinding solvers: From classical to beyond classical;Knowledge-Based Systems;2024-01

3. Conflict-Based Task and Motion Planning for Multi-Robot, Multi-Goal Problems;2023 21st International Conference on Advanced Robotics (ICAR);2023-12-05

4. RTAW: An Attention Inspired Reinforcement Learning Method for Multi-Robot Task Allocation in Warehouse Environments;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

5. Collective Decision-Making for Conflict Resolution in Multi-Agent Pathfinding;Lecture Notes in Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3