How Community Feedback Shapes User Behavior

Author:

Cheng Justin,Danescu-Niculescu-Mizil Cristian,Leskovec Jure

Abstract

Social media systems rely on user feedback and rating mechanisms for personalization, ranking, and content filtering. However, when users evaluate content contributed by fellow users (e.g., by liking a post or voting on a comment), these evaluations create complex social feedback effects. This paper investigates how ratings on a piece of content affect its author's future behavior. By studying four large comment-based news communities, we find that negative feedback leads to significant behavioral changes that are detrimental to the community. Not only do authors of negatively-evaluated content contribute more, but also their future posts are of lower quality, and are perceived by the community as such. Moreover, these authors are more likely to subsequently evaluate their fellow users negatively, percolating these effects through the community. In contrast, positive feedback does not carry similar effects, and neither encourages rewarded authors to write more, nor improves the quality of their posts. Interestingly, the authors that receive no feedback are most likely to leave a community. Furthermore, a structural analysis of the voter network reveals that evaluations polarize the community the most when positive and negative votes are equally split.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modelling dynamic nature of YouTube’s digital ecosystem and its analysis using numerical methods;International Journal of System Assurance Engineering and Management;2024-07-22

2. Classifying User Roles in Online News Forums: A Model for User Interaction and Behavior Analysis;Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization;2024-06-27

3. Community Begins Where Moderation Ends: Peer Support and Its Implications for Community-Based Rehabilitation;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

4. "Community Guidelines Make this the Best Party on the Internet": An In-Depth Study of Online Platforms' Content Moderation Policies;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

5. Social anxiety: topics and emotions shared on Reddit before and during the coronavirus pandemic;Current Psychology;2024-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3