Exploiting Partial Assignments for Efficient Evaluation of Answer Set Programs with External Source Access

Author:

Eiter Thomas,Kaminski Tobias,Redl Christoph,Weinzierl Antonius

Abstract

Answer Set Programming (ASP) is a well-known declarative problem solving approach based on nonmonotonic logic programs, which has been successfully applied to a wide range of applications in artificial intelligence and beyond. To address the needs of modern applications, HEX-programs were introduced as an extension of ASP with external atoms for accessing information outside programs via an API style bi-directional interface mechanism. To evaluate such programs, conflict-driving learning algorithms for SAT and ASP solving have been extended in order to capture the semantics of external atoms. However, a drawback of the state-of-the-art approach is that external atoms are only evaluated under complete assignments (i.e., input to the external source) while in practice, their values often can be determined already based on partial assignments alone (i.e., from incomplete input to the external source). This prevents early backtracking in case of conflicts, and hinders more efficient evaluation of HEX-programs. We thus extend the notion of external atoms to allow for three-valued evaluation under partial assignments, while the two-valued semantics of the overall HEX-formalism remains unchanged. This paves the way for three enhancements: first, to evaluate external sources at any point during model search, which can trigger learning knowledge about the source behavior and/or early backtracking in the spirit of theory propagation in SAT modulo theories (SMT). Second, to optimize the knowledge learned in terms of so-called nogoods, which roughly speaking are impossible input-output configurations. Shrinking nogoods to their relevant input part leads to more effective search space pruning. And third, to make a necessary minimality check of candidate answer sets more efficient by exploiting early external evaluation calls. As this check usually accounts for a large share of the total runtime, optimization is here particularly important. We further present an experimental evaluation of an implementation of a novel HEX-algorithm that incorporates these enhancements using a benchmark suite. Our results demonstrate a clear efficiency gain over the state-of-the-art HEX-solver for the benchmarks, and provide insights regarding the most effective combinations of solver configurations.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aggregate Semantics for Propositional Answer Set Programs;Theory and Practice of Logic Programming;2022-02-23

2. Pruning external minimality checking for answer set programs using semantic dependencies;Artificial Intelligence;2021-01

3. Advancing Lazy-Grounding ASP Solving Techniques – Restarts, Phase Saving, Heuristics, and More;Theory and Practice of Logic Programming;2020-09

4. The Hexlite Solver;Logics in Artificial Intelligence;2019

5. Pruning External Minimality Checking for ASP Using Semantic Dependencies;Logic Programming and Nonmonotonic Reasoning;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3