Autotelic Agents with Intrinsically Motivated Goal-Conditioned Reinforcement Learning: A Short Survey

Author:

Colas Cédric,Karch Tristan,Sigaud Olivier,Oudeyer Pierre-Yves

Abstract

Building autonomous machines that can explore open-ended environments, discover possible interactions and build repertoires of skills is a general objective of artificial intelligence. Developmental approaches argue that this can only be achieved by autotelic agents: intrinsically motivated learning agents that can learn to represent, generate, select and solve their own problems. In recent years, the convergence of developmental approaches with deep reinforcement learning (RL) methods has been leading to the emergence of a new field: developmental reinforcement learning. Developmental RL is concerned with the use of deep RL algorithms to tackle a developmental problem— the intrinsically motivated acquisition of open-ended repertoires of skills. The self-generation of goals requires the learning of compact goal encodings as well as their associated goal-achievement functions. This raises new challenges compared to standard RL algorithms originally designed to tackle pre-defined sets of goals using external reward signals. The present paper introduces developmental RL and proposes a computational framework based on goal-conditioned RL to tackle the intrinsically motivated skills acquisition problem. It proceeds to present a typology of the various goal representations used in the literature, before reviewing existing methods to learn to represent and prioritize goals in autonomous systems. We finally close the paper by discussing some open challenges in the quest of intrinsically motivated skills acquisition.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In praise of folly: flexible goals and human cognition;Trends in Cognitive Sciences;2024-07

2. Learn to Walk with Continuous-action for Knowledge-enhanced Recommendation System;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. Multi-Task Reinforcement Learning in Continuous Control with Successor Feature-Based Concurrent Composition;2024 European Control Conference (ECC);2024-06-25

4. Autonomous Discovery and Learning of Interdependent Goals in Non-Stationary Scenarios;2024 IEEE International Conference on Development and Learning (ICDL);2024-05-20

5. Automated quantum software engineering;Automated Software Engineering;2024-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3