Fairness in Influence Maximization through Randomization

Author:

Becker Ruben,D’Angelo Gianlorenzo,Ghobadi Sajjad,Gilbert Hugo

Abstract

The influence maximization paradigm has been used by researchers in various fields in order to study how information spreads in social networks. While previously the attention was mostly on efficiency, more recently fairness issues have been taken into account in this scope. In the present paper, we propose to use randomization as a mean for achieving fairness. While this general idea is not new, it has not been applied in this area. Similar to previous works like Fish et al. (WWW ’19) and Tsang et al. (IJCAI ’19), we study the maximin criterion for (group) fairness. In contrast to their work however, we model the problem in such a way that, when choosing the seed sets, probabilistic strategies are possible rather than only deterministic ones. We introduce two different variants of this probabilistic problem, one that entails probabilistic strategies over nodes (node-based problem) and a second one that entails probabilistic strategies over sets of nodes (set-based problem). After analyzing the relation between the two probabilistic problems, we show that, while the original deterministic maximin problem was inapproximable, both probabilistic variants permit approximation algorithms that achieve a constant multiplicative factor of 1 − 1/e minus an additive arbitrarily small error that is due to the simulation of the information spread. For the node-based problem, the approximation is achieved by observing that a polynomial-sized linear program approximates the problem well. For the set-based problem, we show that a multiplicative-weight routine can yield the approximation result. For an experimental study, we provide implementations of multiplicative-weight routines for both the set-based and the node-based problems and compare the achieved fairness values to existing methods. Maybe non-surprisingly, we show that the ex-ante values, i.e., minimum expected value of an individual (or group) to obtain the information, of the computed probabilistic strategies are significantly larger than the (ex-post) fairness values of previous methods. This indicates that studying fairness via randomization is a worthwhile path to follow. Interestingly and maybe more surprisingly, we observe that even the ex-post fairness values, i.e., fairness values of sets sampled according to the probabilistic strategies computed by our routines, dominate over the fairness achieved by previous methods on many of the instances tested.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Locating influence sources in social network by senders and receivers spaces mapping;Expert Systems with Applications;2024-08

2. Network Fairness Ambivalence: When does social network capital mitigate or amplify unfairness?;Proceedings of the ACM on Measurement and Analysis of Computing Systems;2024-05-21

3. FairSNA: Algorithmic Fairness in Social Network Analysis;ACM Computing Surveys;2024-04-26

4. Reachability-Aware Fair Influence Maximization;Lecture Notes in Computer Science;2024

5. Causal-Inspired Influence Maximization in Hypergraphs Under Temporal Constraints;Communications in Computer and Information Science;2023-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3