Two-facility Location Games with Minimum Distance Requirement

Author:

Xu Xinping,Li Bo,Li MinmingORCID,Duan LingjieORCID

Abstract

We study the mechanism design problem of a social planner for locating two facilities on a line interval [0, 1], where a set of n strategic agents report their locations and a mechanism determines the locations of the two facilities. We consider the requirement of a minimum distance 0 ≤ d ≤ 1 between the two facilities. Given the two facilities are heterogeneous, we model the cost/utility of an agent as the sum of his distances to both facilities. In the heterogeneous two-facility location game to minimize the social cost, we show that the optimal solution can be computed in polynomial time and prove that carefully choosing one optimal solution as output is strategyproof. We also design a strategyproof mechanism minimizing the maximum cost. Given the two facilities are homogeneous, we model the cost/utility of an agent as his distance to the closer facility. In the homogeneous two-facility location game for minimizing the social cost, we show that any deterministic strategyproof mechanism has unbounded approximation ratio. Moreover, in the obnoxious heterogeneous two-facility location game for maximizing the social utility, we propose new deterministic group strategyproof mechanisms with provable approximation ratios and establish a lower bound (7 − d)/6 for any deterministic strategyproof mechanism. We also design a strategyproof mechanism maximizing the minimum utility. In the obnoxious homogeneous two-facility location game for maximizing the social utility, we propose deterministic group strategyproof mechanisms with provable approximation ratios and establish a lower bound 4/3. Besides, in the two-facility location game with triple-preference, where each facility may be favorable, obnoxious, indifferent for any agent, we further motivate agents to report both their locations and preferences towards the two facilities truthfully, and design a deterministic group strategyproof mechanism with an approximation ratio 4.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3