A Markov Framework for Learning and Reasoning About Strategies in Professional Soccer

Author:

Van Roy Maaike,Robberechts Pieter,Yang Wen-Chi,De Raedt Luc,Davis Jesse

Abstract

Strategy-optimization is a fundamental element of dynamic and complex team sports such as soccer, American football, and basketball. As the amount of data that is collected from matches in these sports has increased, so has the demand for data-driven decisionmaking support. If alternative strategies need to be balanced, a data-driven approach can uncover insights that are not available from qualitative analysis. This could tremendously aid teams in their match preparations. In this work, we propose a novel Markov modelbased framework for soccer that allows reasoning about the specific strategies teams use in order to gain insights into the efficiency of each strategy. The framework consists of two components: (1) a learning component, which entails modeling a team’s offensive behavior by learning a Markov decision process (MDP) from event data that is collected from the team’s matches, and (2) a reasoning component, which involves a novel application of probabilistic model checking to reason about the efficacy of the learned strategies of each team. In this paper, we provide an overview of this framework and illustrate it on several use cases using real-world event data from three leagues. Our results show that the framework can be used to reason about the shot decision-making of teams and to optimise the defensive strategies used when playing against a particular team. The general ideas presented in this framework can easily be extended to other sports.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3